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ABSTRACT 

Considering a vortex line as a C3 curve in Ea, equations governing the flow 
of a steady, compressible gas are expressed in the intrinsic form. These 
intrinsic relations are applied to derive some geometric properties of rotational 
motions, and to study a class of flows whose vortex lines form a family of 
helices on right circular cylinders. 

1. Introduction. Coburn [1], Kanwal [2], Wasserman [3] and Truesdell [4] 

have derived the intrinsic form of  the equations governing the steady motion of  
a gas, by considering a stream line as a space curve in in E a, a three-dimensional 
Eucldean space. In this paper we derive the equations of motion, continuity and 
entropy of  a rotational flow in the intrinsic form by considering a vortex line as a 
C 3 curve in E a. It is assumed the gas is non-viscous and non-heat-conducting. 

By expressing the equations of  motion along the tangent, principal normal 
and the binormal vectors of the vortex line, it is shown that for a circulation 
preserving complexdemellar flow the Lamb surfaces and the surfaces normal to 
the stream lines intersect orthogonally along the vortex lines, and therefore, 
if the vortex lines are lines of curvature on either the Lamb surface or the surface 
orthogonal to the stream lines, then they are lines of  curvature on the other also. 
It is found that in a circulation preserving motion, a vortex line is a geodesic 
on the Lamb surface if and only if the velocity component along the principal 
normal vector is zero. A necessary and sufficient condition is determined for the 
Lamb surfaces to be a family of  parallel surfaces. It is shown that if the vortex 
line admits normal surfaces then these surfaces are minimal if and only if the 
magnitude of the vorticity vector does not vary along the vortex line. 

The intrinsic equations are used to derive the flow equations when the vortex- 
lines are right circular helices.A class of  solutions of  these equations are obtained 

in the case when the binormals of these helices form a normal congruence. 

2. The basic equations. Let x~( j  = 1,2,3) denote a Cartesian orthogonal co- 
ordinate system in E a and let us denote the partial derivative by the symbolism 

t~j - axJ" 
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In E 3 covariant and contravariant components are equivalent. However, in 
order to use the summation convention, we shall write the indices in covariant 
and contravariant positions. Let g~j denote the fundamental tensor of E 3. 

The equations governing the flow of a stationary gas, neglecting viscosity and 
thermal conductivity, are 

(2.1) O j(pu j) = O, 

(2.2) puJOju~ + OiP = O, 

(2.3) uJ O jtl = O, 

(2.4) p = P(p) SOl), 

where, uj are the components of the velocity, p is the density, p is the pressure, 
and q denotes the specific entropy. For a polytropic gas 

(2.5) P(p) = p'/~, 

being the adiabatic exponent. 
If  e *jk denotes the permutation tensor, then the vorticity vector is defined by 

(2.6) 

The Lamb vector 2~ is defined by 

(2.7) 

¢0 i = e iJkOjuk.  

~i = eiyk ¢Ojuk. 

The equations of motion (2.2) can be written in terms of the Lamb vector [5] 

(2.8) 2~ = TOyl - O~H 

where, T is the absolute temperature and H is the stagnation enthalpy defined by 

1 u2 (2.9) H = ~ + I. 

Here u is the magnitude of  us and I is the specific enthalpy. A consequence of  the 
relation (2.6) is 

(2.10) 0j~J = 0. 

3. The basic decomposition. If  fl is a unit vector along the direction of aft, 
then we may write 

(3.1) off = o~s j 

where a~ is the magnitude of  ~o( Let n j and b Jbe the unit vectors along the principal 
normal vector and the binormal vector respectively, of  the vortex line. The velocity 
vector can be expressed in terms of  s j, n j and bJ: 
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(3.2) U 1-- O~lSJ+ 0~2 nj + ~t3 bJ. 

Substituting for co J from (3.1) and for uJfrom (3.2) into (2.8) and using the cross- 
product relations of s/, n j ans b j, (2.8) becomes 

(3.3) o)(%bt - %n3 = Td;1 - a~H. 

Decomposing the right hand side of the above relation along st, n~ and bt and 
equating their coefficients respectively, we get 

dH 
(3.4) d--7.= 0, 

dtl dH 
(3.5) T dn dn = - °ta°~' 

drl dH 
(3.6) T db db = °t2t°' 

where, d/ds, d/dn and d/db denote the directional derivatives operator along the 
directions s j, n I and b ~ respectively. The equation of continuity (2.1), by use of 
(2.3), (2.4) and (3.2), becomes 

(3.7) 

( '  ' ' t  ( °q--a~- + Ix2d-n + %-d-b- P + P °qAt + ct2A2 + %Aa + d°q + dn + dct3~db ] = O, 

where 

(3.8) At ~- cOis l, A2 = 0in ~, A3 = a~b t. 

The equation (2.3) can be written 

( d d d l  
cq-d~- + ~2 ~ -  + =3 ~ -  r/=O. 

Substituting into (2.6) for co i from (3.1) and for u s from (3.2), and equating the 
coefficients of s ~ n Sand b ,~ we find after a lengthy but direct computation that 

d% d~x 2 
(3.9) oft~'~ t + %d - %t + d ~  ~ = co, 

(3.1o) d% d~l ---- 0 
%f22 + % q  - ~ + db - '  

dot 2 doq 
(3.11) %f~3 - %e + kcq -t ds d---n = O, 

where f~t, f~2, ~s are rotation coefficients [6] defined by 

(3.12) f~t . . . .  bk~--'~ nk ~'-,dsk ~2 bk ~ s ._d_~ dnk f~a = nt-d~" s t db~dn 
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k is the curvature of the vortex lines, and 

dnk. k _ ~  dbk k dbk 
(3.13) d=-d -~b ,  e= s ~, q=--d-Gs, t=-d -~n .  

The relation (2.10), when substituted for co ~ from (3.1), yields 

(3.14) d -~( logco) = - A1. 
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Let us now draw some conclusions from our calculations. The relation (3.4) 
shows that the surfaces H = constant contain the vortex lines. This is a well known 
result [5]. Relations (3.5) and (3.6) show that the rate of change of H along the 
principal normal direction is completely determined by the rate of change of 
~/along this direction, and similarly for the rate of change of H along the binormal 
direction. 

For a circulation preserving motion, there exists an acceleration potential ~b 
and therefore 14] 

1 2 
( 3 . 1 5 )  = - + ). 

That is, ~b satisfies the relation 

The surfaces ~b+(1/2)u 2 =constant are the Lamb surfaces. From (3.15) it is 
clear that the Lamb surfaces contain both stream lines and vortex lines. If the 
motion is complex-lamellar, that is, if there exists a family of o01 surfaces orthogonal 
to the stream lines, then these surfaces contain vortex lines. And these two families 
of surfaces, the Lamb surfaces and the surfaces orthogonal to the stream lines, 
intersect orthogonally. Therefore we have: 

THEOREM. In a circulation preserving complex-lamellar flow, the Lamb 
surfaces and the surfaces orthogonal to the stream lines intersect orthogonally 
along the vortex lines. 

This result is more general than the one in the paper [7]. Since the Lamb 
surfaces and the surfaces orthogonal to the stream lines are orthogonal we apply a 
classical theorem due to Joachimsthal [8] and obtain the following statement: In 
a circulation preserving complex-lamelIar motion if the vortex line is a line of 
curvature on either the Lamb surface or the surface orthogonal to the stream 
line, then it is a line of curvature on the other also. 

From the relation (2.8), (3.3) and (3.5) we find that the normal to the Lamb 
surface is along the principal normal of the vortex line if and only if ~2 = 0. 
Therefore, a vortex line is a geodesic on the Lamb surface in a circulation 
preserving motion, if and only if the component of the velocity vector along the 
principal normal vector of the vortex line is zero. 
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From (2.8), (3.3) and (3.15) we find that 

where d/d~ is the directional derivative along the Lamb vector. Therefore, a 
necessary and sufficient condition that the surfaces, containing ui and coi, be 
parallel surfaces is that 

0 ,  + = a 2 

where a is a constant along each surface of the family. A similar result has been 
obtained by Coburn [1]. The above condition is also equivalent to 

a a . 
o~ 2 = - - c o s o c ,  o~ 3 = - - s l n c x ,  

~0 60 

being a parameter. 
The relation (3.14) shows that the rate of change of - l ogo  along the vortex 

lines equals the divergence of the vector s f. I f  A1 = a~s f = O, then o~ does not 
vary along the vortex lines, and conversely. The condition A t = 0 is a geometrical 
condition on the congruence of vortex lines. It means, roughly, that the vortex 
lines do not converge (or diverge). 

A motion for which the vortex lines possess a family of normal surfaces satisfies 
f~x = 0, and A t is then the mean curvature of these normal surfaces. In particular 
~o does not vary along the vortex lines if and only if the mean curvature A t 
vanishes, that is, if and only if the family of normal surfaces constitute a family 
of minimal surfaces. From the previous results in this section we find that, in a 
circulation preserving complex lamellar motion with vortex lines possessing 
normal surfaces, the velocity vector, the vorticity vector and the Lamb vector 
are mutually orthogonal at every point of the flow, that is, the Lamb surfaces, 
the surfaces orthogonal to the stream lines and the surfaces orthogonal to the 
the vortex lines are mutually orthogonal. This result is known [9]. 

For a screw motion, that is, for a motion with co ~ parallel to u s, a 2 = eta = 0, 
cq = u .  Therefore (3.10) and (3.11) imply that u does not vary along the binormal 
of the vortex lines and that the variation of logu along the principal normal equals 
the curvature of the vortex lines. 

4. Flows whose vortex lines are right circular helices. Here we shall consider 
the case where the vortex lines form a family of right circular helices. We introduce 
the cylindrical coordinates r, 0 and z and write 

(4.1) s~ -- 0~sin/~ + z~cos/~, 

( 4 . 2 )  n ~ = - r ~ ,  

(4.3) b~ = - 0~cosfl + zz sinfl. 
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Here 0~ and z~ are the unit vectors along the increasing 0 and z directions respec- 
tively and r~ is the unit vector along the radius of the cylinder, fl is the angle of 
the helices and is in general a function of r. Since the vortex lines form geodesics 
on cylinders, we have c~ 2 = 0. (Section 3). 

Since helices form a congruence of parallel curves on cylinders, At = 0  [10]. 
After some computation we find that: 

(4 .4)  A t  = A 3  = d = e = q = 0 ,  

sin 2 fl cos 2 fl 
(4.5) k = ~ ,  t = ~ ,  /" g 

dfl 
(4.6) f~l = 

and 

d sin p O 
(4.7) d'--~ = r O0 

+ s inpcosp tO2 = O, tO3 = sin/~ cos# + _ 
r ' r dr 

0 d 0 d cosfl 0 sin fl d-~ 
b cosfl ~--~, ~-~ = Or'db= r O0 

Substituting these relations into (3.4)-(3.7), (3.9)--(3.14) we find that 

dH 
(4.8) ds = O, 

(4.9) Tan 0H 
Or + Or" = --aa¢° 

drl dH 
(4.10) T-~ db = 0 

(4.11) 

(4.12) 

o q ~ - +  cq-d- ~ P + P ~ ds + db ] = O, 

r \d-r Or 

(4.13) d% dat 
ds +-d-b -" = 0, 

sinflcosfl dfl) sin 2 0al 
(4.14) % + + -fla 1 + = 0, 

r Trr r W 

d¢o 
(4.15) d----T = 0. 

The entropy condition (2.3) now becomes 

d 
(4.16) ( a 1 ~ + ~ 3  d )  r i = 0 .  
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In the above relations d/ds and d]db are given by (4.7). The above equations 
constitute the flow equations for a motion whose vortex lines are right circular 
helices. 

5. A special flow. We shall now find a class of  solutions of  the set of  equation s 
(4.8)-(4.16). We shall assume that the flow is isentropic that is, r / -  constant, 
and the gas is polytropic. Further let 

dfl cosp s i n p  = 0 
(5.1) dr r 

(5.2) ~t 3 = 0q(r), ~t 1 = al(r), H = H(r), co = oJ(r), P = P(r). 

The condition (5.1) implies that f~a = 0 and therefore b~ forms a normal con- 
gruence and 

(5.3) tanp = r / l ,  

where ~ is an arbitrary constant. The equations O.8)-(4.16), by virtue of  (5.1)-(5.3), 
now reduce to 

dH 
(5.4) -- d"-'r- = ¢0~3' 

cos2p ( 2 , )  
(5.5) - ~ s  ' ' + ~ - 

r 

(5.6) 62 = 0 ,  

(5.7) d~  r 
-dr - ~ 2 + r  2~1. 

Integrating equation (5.7), we get 

d~  3 

dr 

( 5 . 9 )  

In particular if 

(5.10) ~ 3  = - Ar(~ 2 + r2) -~ , 

the equation (5.9) reduces to 

(5.11) co = 4A{2({ 2 + r2) -~ . 

Substituting for ~3 from (5.10) and for to from (5.11) into (5.4) and integrating, 
we obtain 

(5.8) ~ -- A~(~ 2 + r2) -~ , 

where A is an arbitrary constant. (5.3), (5.7) and (5.8) imply that 

~2 2A~2 d~ 3 
-~3  r({2+r 2) | (~2+r 2) d~ --t°" 
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(5.12) H = B 2 2A2~2 
(~2  + r2) • 

Here B is an arbitrary constant. Since we have assumed the gas to be polytropic, 
the specific enthalpy [5] 

~'dp = fo" dp ~_ 1)pC,_1)/,, (5.13) I = Jo 7 T = s(r 

where S =  S(t/) --- constant. From (5.8) and (5.10) the magnitude of the velocity 
is found to be constant and is equal to A. Therefore from (2.9), (5.12) and (5.13), 
we find that the pressure is given by 

2A2~ 2 Y p(~- I)/~ 
(5.14) B2 ~2+r2  ½A2 = S ( 7 -  1) 

From (3.2), (5.8), (5.9), (4.1) and (4.3), the velocity vector becomes 

A 
(5.15) u~ ---- ~2 + r 2 [2~rO~ + (~2_ r2)zi]. 

For an isentropic motion of a polytropic gas, the equations of motion (2.2) and 
continuity (2.1) assume the form 

Spll~uJ~lui + ~ip = 0, 

a~( f / 'u  j) = O. 

Transforming the above equations into polar coordinates, we find that the com- 
ponents of velocity and pressure satisfy the transformed equations. From (5.15), 
we find that the stream lines are also right circular helices, making an angle 6 
with the z axis, where 

cos6 = ~2 _ r 2 

~2 + r =" 

As r changes from 0 to inf inity t~ changes from 0 to n. A t  r = ~, 6 = n/2. The 
vorticity vector, from (3.1), (4.1) and (5.11), becomes 

09 i -- 4A~ 2 (~2 + r2)~ [rO~ + ~zJ. 

The angle/~ of the vortex lines changes from 0 to n/2 as r changes from 0 to 
infinity. We find that the angle between u ~ and to t is also ft. 

Since [1] 
C 2 

I =  
7 - 1  

where c is the local sound speed, the relation (5.13) and (5.14) yield 
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= 7 - 1  

Here M = u/c  is the Mach number. For real M the constant B must satisfy 

c 2 
B 2 > 

7 - 1 "  

The flow is supersonic, sonic or subsonic according as 

(.5~ + ~)+ (C ~ 7 1_ i) ~ 1. 

Other classes of flows may be found by assigning appropriate functions to u3 
in (5.9). Different classes of flows may be obtained by assigning appropriate values 
to /~. 
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